CBCS SCHEME

USN	·											17ELN15/25	
-----	---	--	--	--	--	--	--	--	--	--	--	------------	--

First/Second Semester B.E. Degree Examination, Aug./Sept.2020 **Basic Electronics**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain pn junction diode operation in both forward and reverse bias conditions with suitable diagrams. (06 Marks)
 - b. With a neat diagram and waveforms, explain the operation of bridge rectifier. (08 Marks)
 - c. Explain Zener diode voltage regulator with no load and with load. (06 Marks)

OR

- 2 a. With a neat circuit diagram, explain the operation of center tapped full wave rectifier. Draw the input and output waveforms. (07 Marks)
 - b. Sketch the transistor input and output characteristics of CE configuration and briefly explain the three regions of operation. Also calculate the value of I_C and β_{dc} for a transistor with $\alpha_{dc}=0.98$ and $I_B=120~\mu A$. (07 Marks)
 - e. What is the need of capacitor filter? Explain the operation of C-filter for half wave rectifier.

 (06 Marks)

Module-2

3 a. Write the procedure for drawing dc load line on the transistor CE output characteristics.

(06 Marks)

- b. Derive an equation for output voltage of a non-inverting op-amp. Find the gain of op-amp if $R_F = 10 \text{ K}\Omega$ and $R_1 = 1 \text{ K}\Omega$. (08 Marks)
- c. Design a base bias circuit with a 12V supply that uses a transistor with $h_{\rm fe}=70$ so that $I_C=2$ mA and $V_{CE}=9$ V. Assume $R_E=0$ and $V_{BE}=0.7$ V. (06 Marks)

OR

- 4 a. With a neat circuit diagram, explain the voltage divider bias circuit using approximate analysis. Given $V_{CC}=15$ V, $R_C=2.7$ K Ω , $R_E=2.2$ K Ω , $R_1=22$ K Ω , $R_2=12$ K Ω , $V_{BE}=0.7$ V. Calculate V_E , V_C , I_C and V_{CE} . (09 Marks)
 - b. Derive an expression for output voltage of op-amp subtractor. (07 Marks)
 - c. An op-amp has a slew rate of 0.8 V/µsec. What is the maximum amplitude of undistorted sine wave that the op-amp can produce at a frequency of 40 kHz? What is the maximum frequency of the sine wave that op-amp can reproduce if the amplitude is 3V? (04 Marks)

Module-3

- 5 a. Perform the following operations:
 - (i) $(ABC.E5F)_{16} = (?)_{10}$ (ii) $(100.974)_{10} = (?)_2$ (iii) $(1100111.0101)_2 = (?)_8$ (06 Marks)
 - b. Design and implement full adder using logic gates. (06 Marks)
 - c. Using NOR gates realize NOT gate, OR gate, AND gate and NAND gate. (08 Marks)

OR

17ELN15/25

			(06 Marks)
6	a.	State and prove Demorgan's theorem.	(00 Marks)
	b.	Subtract: (i) $(11011.11)_2 - (10101.11)_2$ using 1's complement method	(0 (1/4 - 1 -)
		(ii) $(10101.11)_2 - (11011.11)_2$ using 2's complement method.	(06 Marks)
	c.	Simplify and realize the following Boolean expressions using NAND gates:	
		(i) $Y_1 = \overline{ABC} + ABC + \overline{ABC} + \overline{ABC}$ (ii) $Y_2 = (\overline{A} + \overline{B} + \overline{C})(A + \overline{B} + C)$	(08 Marks)
		Module-4	
7	a.	Define flip-flop. Explain the operation of RS flip-flop.	(06 Marks)
,	a. b.	Explain the architecture of 8051 microcontroller with a neat block diagram.	(08 Marks)
		Explain the operation of NAND gate latch.	(06 Marks)
	c.	Explain the operation of White gate laten.	
		OR	
8		Explain the operation of clocked RS flip-flop.	(06 Marks)
ð	a.	Write the features of 8051 microcontroller.	(08 Marks)
	b.	With a neat interfacing diagram, explain how stepper motor is interface	
	c.		(06 Marks)
		microcontroller.	(0011111115)
		Module-5	
^	_	Explain the elements of communication system with the help of neat block diagra	ım
9	a.	Explain the elements of communication system with the neip of heat older engine	(06 Marks)
	b.	Define modulation. With suitable equations and waveforms, explain frequency m	odulation.
	υ.	Define modulation. With surface squares and warring in	(08 Marks)
	c.	What are passive and active transducers? Explain Seebeck effect and Peltier effect	et.
			(06 Marks)
		OR	
10	a.	With circuit diagram and waveform, explain the AM detection.	(06 Marks)
	b.	A 1 MHz carrier of 1 KW power is amplitude modulated with a message signal	al of 2 kHz.
		The depth of modulation is 60%. Determine the total power, sideband frequency	uencies and
		power in sidebands of the AM wave.	(06 Marks)
	C.	Explain the construction and operation of LVDT.	(08 Marks)